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1. INTRODUCTION 

The nation currently is debating what form, 
if any, of national health insurance should be 
adopted. Evaluating alternative proposals re- 
quires the best knowledge concerning the conse- 
quences of alternative ways of financing medical 
care services. To increase current knowledge, 
the Department of Health, Education, and Welfare 
is sponsoring the Health Insurance Study (HIS) 
which is being designed and analyzed by The Rand 
Corporation and conducted with the help of sev- 
eral subcontractors. A summary description of the 
study design is provided in (Newhouse 1974). 

The main part of this study involves collect- 
ing from three to five years of longitudinal data 
on each of a large number of families after assign- 
ing to them one of several kinds of health insur- 
ance plans (treatments). The finite selection 
model (FSM) has been developed primarily to deter- 
mine which families should be assigned to which 
treatments, although it also is used for other 
purposes. 

The FSM is both a set of concepts and a com- 
puter package for defining and then carrying out 
the required operations. The concepts are discuss- 
ed below. They include formulas for assessing the 
worth of a particular assignment, and algorithms 
for finding optimal or near -optimal assignments. 
Good assignments must satisfy requirements of pre- 
cision, balance, and robustness. Statistics need- 
ed to assess precision and balance are provided in 
Sections 2, 4, 5 when a linear model is specified. 
The main idea behind the optimality algorithm is 
given in Section 2, but it is modified and adapted 
to provide balanced and robust samples in more gen- 
eral situations in Sections 4, 6, 7. 

The work here is an outgrowth of that of 
Conlisk and Watts (1969). Their "allocation model" 
has been used to find optimal sample sizes for sev- 
eral large -scale public policy experiments before 
the HIS. While their model dictates classical de- 
signs in situations where the inputs and needs 
(costs, precision, etc.) have sufficient symmetry, 
it has the desirable effect of dictating nonclas- 
sical designs in the asymmetrical situations usual- 
ly encountered in complex experiments. 

The Conlisk -Watts model, however, is not en- 
tirely satisfactory for assigning families to 
treatment groups in the presence of a substantial 
battery of preexperimental data collected for each 
family. Their model generates optimal stratified 
samples for these situations. Stratified samples 
have the disadvantage that (i) the number of pre - 
experimental variables used must be severely limit- 
ed, (ii) families with dissimilar values on a con- 
tinuous variable, such as income, must be grouped 
into the same stratum, (iii) more families than 
available may be required from a given stratum 
(because their model samples from an infinite pop- 
ulation). 

The finite selection model is so named because 
it circumvents these difficulties by making selec- 
tions for treatments from the finite population of 
subjects known to be available for assignment. Ob- 
jection (iii) is thereby eliminated. Preexperimen- 
tal measurements are permitted to be continuous, 
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if desired, thereby eliminating objection (ii) and 
dealing with objection (i) by permitting a substan- 
tial increase in the number of preexperimental 
variables utilized. 

We proceed in the next section to discuss the 
model, building up the concepts of optimality, bal- 
ance and robustness stepwise in Sections 2 -6. Dis- 
cussion of the specific application to HIS is re- 
served for Section 7. 

2. THE FINITE SELECTION MODEL AS AN OPTIMIZATION 
MODEL 

As stated before, the main application of the 
FSM to the Health Insurance Study is to assign ex- 
perimental subjects to treatment groups according 
to the general design goals of: optimality (i.e., 
precision); balance; and robustness. Rather than 
consider all these objectives at once, they will be 
considered separately in different sections. All 
these concepts derive from the definition and algo- 
rithm for optimality considered in this section. 

Assume that k measurements on each of N exper- 
imental subjects have been obtained and are avail- 
able in the form of an N x k matrix XN. Associated 
with the i -th subject is a cost ci > O,i = 1(1)N. 
A budget constraint C is specified, and any subset 
S Cl, ..., N} of subjects may be selected provid- 
ed 

ci < C. (2.1) 

Let be the set of all subsets satisfying (2.1). 

The optimization problem is to choose the element 
in which minimizes a given objective. In prin- 

ciple, since is finite, this may be done by enu- 

meration. That is, in a sense, the problem is 
solved as soon as an objective function is speci- 
fied. However, for a problem of the magnitude of 
the HIS, a complete enumeration would take about 
10500 years of computer time, so an algorithm also 
must be specified. 

The objective function for this work borrows 
heavily from Conlisk and Watts, who used sim- 
ilar criteria in designing the negative income tax 
experiments, and also from others before them, es- 
pecially (Kiefer 1959), (Elfving 1952) who studied 
the mathematical consequences of these criteria 
under the name "A- optimality." The reader is re- 
ferred especially to (Conlisk -Watts 1969) for back- 
ground material. 

A response variable y will be measured for each 
subject during the experiment. It cannot be used 
to design the experiment, except: to suggest an 

appropriate scaling of the variables in XN; and to 
choose the budget or number of subjects needed for 

specified precision. This is assumed to have been 
done. 

If n subjects are available in the analysis, a 
regression equation of the form 

y = + e, E(e) = 0, V(e) (2.2) 

is specified, Xn being an n X k matrix. Define 



Sn = (XñXn)-1. 
a row of x' of XN which is not a row of as the 

(2.3) n + 1st candidate, so that 

Then the Gauss - Markov estimator b is the most ef- 
ficient unbiased estimator of the unknown k- vector 
of regression coefficients ß, where 

b = SnX'y V(b) = (2.4) 

Certain linear combinations of the regression co- 
efficients are to be estimated. If there are p of 
them, then a known matrix P of dimensions p X k is 
specified and the vector a = Pß is to be estimated. 
The dimension p may be either larger or smaller 
than k. The best unbiased estimate of and its 
variance is 

a = Pb, V(a) = a2PS P'. (2.5) 

Precise estimation of all the components of 
a would follow if the diagonal elements of V(a), 
the variances of the ai, could be simultaneously 
minimized by appropriate choice of Xn. This being 
impossible, a real - valued functional on V(a) must 
be specified. Several choices have been consid- 
ered in the literature (Kiefer 1959), one of the 
most popular being to minimize the generalized 
variance, or determinant, IV(a)I. The determinant 
criterion, being independent of P when p > k, is 
an inefficient choice for the HIS since specified 
linear combinations of are of special interest. 
Instead we follow (Conlisk -Watts 1969) and mini- 
mize the weighted sum of variances 

y(Xn) Var(aj), 

with weights (W1, ..., W Wj > 0 specifying the 
relative importance of estimating the ai. The 
scalar a2, which is not assumed known, 1s immate- 
rial to this criterion. Including its value in 
(2.6) makes the expression for independent of 
a2. 

Denoting W as the p p diagonal matrix hav- 
ing diagonal elements (W1, Wp), and then de- 
fining T = P'WP, a known k X k matrix, (2.6) may 
be rewritten 

(2.6) 

y(Xn) = tr(TSn) (2.7) 

with tr, the trace function of a matrix, being the 
sum of diagonal elements of the matrix. 

The first and simplest problem considered in 
this paper is the following: 

Problem 1 

Find the n rows of the N rows of XN which 
minimize (2.7) among choices which have total cost 
(2.1) not exceeding the cost constraint C. 

Problem 1 requires solution to a nonlinear 
integer programming problem. An optimization 
method analogous to the method of steepest descent 
is described below. This method can be proved to 
coverge in the continuous case, and always has 
given satisfactory results in discrete situations 
for which it is mainly intended. This convergence 
issue will be discussed more fully in Section 3. 

The algorithm is based on the matrix identity 
(2.9). Suppose already has been specified such 
that the inverse Sn in (2.3) exists. Now consider 
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Xn+l = Xn+1Xn+1 XñXn + xx'. (2.8) 

Then defining S (X' X ) -1 
n n +l n +l 

S xx'S 
n n 

+l (2.9) 
Sn 1 + x'S 

n 
x 

From (2.9) and (2.7), it follows that 

x'S 
n 
TS 
n 
x 

c(Xn +1) = p(Xn) 1 + x 
n 

The value of x that maximizes the right -most term 
in (2.10) therefore will produce the optimal 
from X . Since cost must be considered, let ci be 
the cost of the experimental subject located in the 
i -th row of XN, having vector of characteristics 
xi. Define 

(2.10) 

1 xSTSx inni 
CEi(Xn) 

ci + xiSnxi 
(2.11) 

as the cost -effectiveness of experimental unit i, 
conditional on already having been selected. 

The implied algorithm now is obvious. At 
each step choose from the remaining available 
units to maximize CEi. After a choice is made, 
update Sn using (2.9). Repeat this process until 
the budget constraint is met. Each of the compu- 
tations (2.10) is relatively inexpensive since 
only two inner products are involved, and the in- 
version (2.9) is much cheaper than inverting a full 
matrix. 

The preceding algorithm does not cover the 
initial cases when XñXn is not invertible. For 
these cases an initial invertible matrix Q0 is 
specified. The choice Q0 proportional to XÑXN or 
some guess at the final form of the optimal 

often is convenient. Then 

= (XñXn 
-1 

(2.12) 

does exist for any e > 0, and is used in place of 
Sn in (2.11), and (2.9). The value of e usually 
would be quite small. In tests, the final effi- 
ciency and the selection order of. experimental 
units has depended little on the choice of e. As 

0, if QO is the identity matrix, the limit in 
(2.12) is the "pseudo- inverse" of The 
pseudo -inverse could be used to provide another 
method of treating the noninvertability problem. 

The routine just described, which moves from 
no assignments to a complete assignment is termed 
"build -up." Further improvement may be sought by 
proceeding then to a "substitution" phase. Obvi- 
ously substitution may be used to try to improve 
any full assignment, not only one obtained through 
build -up. 

Define 

xSTSx 
CEi = 

1 inni 
- xiSnxi 

(2.13) 

Given the matrix Xn, it may be seen that reltoval 
from Xn of the subject i which minimizes CEi will 



cause the minimum increase in variance per unit 
cost. This follows because 

Sn-1 + n 1 - x'S x 
n 

and so 

(2.14) 

x'S TSnxi 

p(Xn -1) + 1 
xi 

(2.15) 
ini 

if Xn is with the row corresponding to xi re- 
moved. 

The substitution procedure simply removes 
the already selected subject which minimizes CE* 
(2.13) and puts this subject back into the pool of 
unselected subjects. Then a search is made over 
the pool of unselected subjects and the subject 
that maximizes CE (2.11) is determined. This sub- 
ject then is substituted for that one just removed. 
Iteration stops when a subject is substituted for 
himself. 

In our experience, only small gains have been 
obtained from substitution after build -up. This 
provides an empirical demonstration that the build- 
up algorithm is effective in obtaining a near opti- 
mum. Substitution also may be used as a convergence 
check in any particular case. 

Algorithms developed from (2.13) can be ef- 
fective from other viewpoints. For example, if n 
is nearly as large as N, then considerable compu- 
tational expense is saved by assigning all N sub- 
jects initially and then "building down" to n by 
weeding out those that are ineffective. And, in 
general, if both build -up and substitution algo- 
rithms are available, then there are trade -offs 
between the number of computations that should be 
attempted -in either phase in order to attain a 
nearly optimal set overall. For example, during 
build -up it is cheaper to search over only a small 
set of available subjects, not all subjects, before 
making each selection. (This concept is discussed 
more fully in Section 7 under the name "search 
length. ") The result is a fairly good assignment 
that can be further improved without too many sub- 
stitutions. Another application of the substitu- 
tion algorithm, to the allocation model, will be 
discussed in Section 3. 

3. THE FINITE SELECTION MODEL AS AN ALLOCATION 
MODEL 

It was noted in Section 1 that the finite 
selection model just described differs from 

the allocation model considered in (Conlisk -Watts 
1969) primarily because their model has a limited 
number m of distinct rows, but each row may be se- 
lected an unlimited number of times. The X of FSM 
may have an unlimited number of distinct rows, but 

no row may be selected more than once. 
Still, the substitution algorithm just de- 

scribed may be used to solve for the optimum in the 
allocation model and in that case (the "continuous 
case ") it can be shown that the optimum is attained. 
Because these considerations are important from both 
a mathematical standpoint and for application to the 
allocation model, we shall digress briefly in this 
section to discuss them. 

Let X be a specified m k matrix. This is 

as before, except each row of X may be chosen not 
only once, but any nonnegative number of times, 
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including a fractional number. The solution to 

the allocation model problem then is a vector 
(n1, of proportions,,ni specifying the 

proportion of times the row xi of X is to be allo- 

cated. The cost constraint does not affect the 

proportions, only the relative values of the costs 

ci do. Initially, let N be a large integer, and 

choose any integers n1, ..., such that = N. 

This is the initial allocation and its inner prod- 

uct matrix is 

X = Enixixi . (3.1) 

The FSM then is employed in the substitution mode, 

using (2.13) and (2.11) ta find the least cost - 

effective row i* of X, reducing ni* by one. It 

then finds the most cost -effective row i of X and 

augments ni by one. Each substitution moves a 

step closer to the optimum, which cannot be achiev- 

ed in general if N is finite. If ever i, then 

N is doubled and so is each value ni. The proce- 

dure is repeated for the new value of N. This pro- 

cedure ends when N is quite large and the optimum 
is declared to be 

ni = ni /N, i = 1(1)m 
= 1, 2, ..., m. (3.2) 

When N is large, the contribution xISNxi in 

(2.11), (2.13) is small compared to unity (a typi- 

cal value is 1 /N). Consequently, for large N, it 

is advantageous to ignore the difference between 

CE and CE *, replacing both by 

CEi(n1, nk) , (3.3) 

i 

over all points i 1, m where 

SN = -1. (3.4) 

The substitution then is based on the largest and 

smallest values of (3.3). 

This algorithm is the continuous extension of 

the substitution algorithm used in the discrete 

situation. It is also the method of "steepest 

descent" applied to minimization of the criterion 

for the allocation model, and is known to converge 

to a unique minimum since is a convex function 

of (n1, The allocation model always has 

been solved very inexpensively using this algorithm. 

By analogy, the algorithms for the FSM also 

must produce nearly optimum solutions in the dis- 

crete case (where each x may be selected only 

once) provided N is fairly large. This has been 

supported by our experience using these algorithms, 

even including ones with small N. 

In very large problems, such as actual selec- 

tion and assignment of HIS families, the goal of 

optimality is too expensive, even if it is achiev- 

able. In these situations, we settle for the less 

expensive uses of the preceding algorithms describ- 

ed in Section 7 and for substantial precision gains 

without insisting upon optimal assignment. Opti- 

mality of the algorithm is an issue of greater the- 

oretical than practical importance provided that 

there is evidence that most of the gains realized 

by optimal assignments has been achieved. Of 

course the computer could be programmed to continue 

only so long as the value of the marginal increase 



in experimental precision exceeds the marginal 
cost of computer time. 

4. USING THE FINITE SELECTION MODEL TO CONSTRUCT 
BALANCED GROUPS 

In practice the FSM must select subjects 
for each of several treatment groups from the 
same subject pool. There then are two objec- 
tives: to achieve high efficiency within each 
group; and to balance the design matrices be- 
tween the groups. We show here how the version 
of FSM which is designed to produce efficient 
samples may be extended to produce both efficient 
and balanced groups. 

Let ni be the number of subjects to be as- 
signed to the i -th treatment group, i = 1(1)g. 
Let N be the total number of subjects available 
for experimentation. Of course n1 + + ng < N. 
(While costs actually are to be allocated, for 
ease of exposition here they are taken to be equal. 
This justifies formulation in terms of prespecified 
sample sizes.) 

Problem 2 

The characteristics of the N potential ex- 
perimental subjects are given in the N rows of XN. 
They are to be assigned to g groups of prechosen 
sizes [n1) such that the groups are (i) "bal- 
anced" and (ii) each group has good precision. 

The concept of "balance" is difficult to de- 
fine and measure when it is imperfect. If 

nl = n2 = = then perfect balance corre- 
sponds to 

X1 = = Xg (4.1) 

with Xi the design matrix of the i -th treatment 
group. This is possible only when n blocks of g 
perfectly matched experimental subjects are avail- 
able to be assigned as balanced blocks. Although 
this can be caused to happen artifically, by strat- 
ifying and ignoring certain variables (for example 
in the HIS, income could be split into three 

groups only and all other preexperimental vari- 
ables ignored), perfect matching almost always is 
impossible when assigning experimental subjects to 

treatments. When the ni are unequal, the analogy 
to (4.1) is even more restrictive. 

In general, measures which compare imperfect- 
ly balanced assignments are needed so that the 
best of several imperfect alternatives may be se- 
lected. As a first cut, when the linear relation- 
ship between the covariates and the dependent 
variables is certain, (4.1) is no better for esti- 
mating treatment contrasts than requiring that the 
vector of column means for each matrix Xi be the 
same for all i = 1(1)g (Haggstrom 1975). 

In the case nl = ng, a measure of bal- 
ance which is congenial to the development in 
Sections 2, 3 requires that the set of numbers 

E q(Xi) be close to one another. Then the 
measure of balance 

( , (4.2) 

may be used. When the ni are not all equal, the 
cannot be expected to be equal, and a modifica- 

81 

tion must be made. We shall return to this point 
in Section 6. 

The algorithm used by the FSM to produce both 
balance and efficiency simply requires the experi- 
mental treatments to take turns selecting the cost - 
effective experimental subject from the remaining 
list of unselected subjects during the build -up 
phase. Each treatment group in turn chooses one 
subject, making the cost- effective choice for its 
needs according to the criterion (2.11). The next 
choice is made by a different treatment. At the 
end of the build -up phase, when the full quota 
nl, ng has been reached, the no a N - I un- 
selected subjects which are least useful remain un- 
assigned, while the subjects which provide max- 
imum information are assigned and are fairly well 
balanced over the treatment groups. 

Fixed, random, or sequential methods may be 
used to determine selection order. The simplest 
and most powerful "fixed" procedure is the percent- 
age method. At each step, the treatment group 
which has had the smallest percentage of choices 
at that point makes the next selection. A fully 
random procedure would determine the selection 
order at random, subject to the constraints that 
at the end of choices there must have been ni 
selections for plan i. There are many possible 
subrandomizations which lie between these two 
strategies, for example blocked and stratified 
randomization. The percentage method for selection 
order would be expected to provide the optimum bal- 
ance, random selection order the least (it's possi- 
ble that one group would make all the first choices 
in this case). However, randomization still may 
be an advantage insofar as visible randomization 
often is viewed as a necessary input to experimen- 
tation. Although this form of randomization is 
least efficient in the FSM, even then the balance 
produced is a substantial improvement over that 
achieved by ignoring the FSM and assigning subjects 
at random to treatments. 

Why do these methods produce balanced samples? 
Heuristically, because each treatment selects ac- 
cording to the same algorithm (it doesn't even mat- 
ter if the objective function is misspecified badly), 
and with selection times distributed similarly to 
the other treatments. The results would be satis- 
factory even if the least valuable families were 
evaluated as the most valuable by the selection 
criterion. This produces balanced samples for the 
same reason that taking turns when choosing teams 
for competition leads to balanced teams when the 
choosers are equally capable. In one example, the 
case when n blocks of g identical subjects are 
available, it is clear that the fixed selection 
order will lead to complete balance, producing the 
result (4.1). The rest of the proof is based on 
experience: selections that have been made follow- 
ing these procedures have been much better balanced 
than those that occur from simple random sampling. 
Finally, after any particular allocation, the bal- 
ance of the resulting sample may be calculated to 
make sure it is satisfactory. 

The percentage method and random selection 
order are "nonsequential" in that they may be spec- 
ified in advance before any selections actually are 
made. Truly "sequential" selection methods would de- 

pend on the current value of for each treatment 
group, the group with the largest (worst) value 
being permitted to make the next selection. A 



substitution phase (cf., Section 3), which is 
necessarily sequential, can be carried out if the 

can be compared. Then at each step the least 
efficient treatment would be permitted to draw 
from the most efficient. When the (Ili) are un- 
equal, this can be done only if an entirely sat- 
isfactory scaling of the has been achieved, 
one which accounts for differences due purely to 
unequal sample sizes. 

5. SCALING THE OBJECTIVE FUNCTION FOR REPRE- 
SENTATIVE SAMPLING 

If the assigned weights are to have a 
meaningful effect, it is necessary that they be 
defined in terms of an expected assignment. If 

for example we expect Var(al) = 1,000,000 Var(a2) 
with random sampling, then an algorithm based on 
(2.6) will ignore a2 and concentrate almost ex- 
clusively on Var(a1Y for any moderate value of the 
ratio W1 /W2. 

Relative precisions like 1,000,000 are not as 
rare as one might think. Suppose a1 is the re- 
gression coefficient of the variable x1. The pre- 
cision for estimating a1 is drastically reduced 
by the inclusion of another independent variable 
x2 in the model which is highly collinear with x1. 
The researcher who specifies the weights 
needs protection against the effect that the in- 
clusion or exclusion of an extraneous variable 
has on the design by making some weights meaning- 
less. 

It also is desirable to specify appropriate 
centering and scaling of the design matrix. For 
example, if a target population is specified then 
it is appropriate to center the independent vari- 
ables for,the regression at their expected values 
for that population. In a significant number of 
examples, the N subjects being assigned provide 
the best estimate of the target population, be- 
cause they represent the largest random sample 
taken from that population. 

The methods about to be developed in this 
section account for the difficulties just de- 
scribed by using the expected outcome of random 
sampling as a bench mark. By good fortune, these 
methods also will contribute to measurement of 
balance for situations where the group sizes 
nl, ng are unequal (cf., Section 4). 

Suppose XN is constructed in the following 
manner. The N subjects are sampled at random 
from a population, the i -th subject having k -1 
vector of measurable characteristics = 

(zit, ', zik). Now for i 1(1)N, let XN be the 
matrix with elements 

x 1, xij j 2(1)k (5.1) 

with z Ez/N. The first column of XN is for 
fitting a congtant term, the remaining columns are 
centered at the best estimates of the population 
means available. 

Suppose n of the N rows are sampled 
from XN at random. Define as the n X k ma- 
trix comprisgd of these n rows, and again let 

. The expected value of Sn given 
the matrix of values SN is needed. The case of 

the multivariate normal distribution will be con- 
sidered first. 
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Under the assumption that the N independent 
variables which define the rows of XN are sam- 
pled at random from a multivariate normal distri- 
bution with mean vector and covariance matrix 
E, 

Nk_1(µ, E), independently i 1(1)N, (5.2) 

then this expectation is given by 

1 
2 k -1 

(n- k- (5.3) 

with zN /N and the (k -1) X (k -1) matrix with 
(j, 4.) element, 2 < j, < k, defined by 

N 

i 

/(N -k -1). 

The result in (5.3) assumes 
which is somewhat technical 
here. 

Denote by the k X k 
hand side of (5.3), and let 

the matrix P in (2.5) so aj 

and (2.7) now are modified, 
redefining the weights: 

(5.4) 

n > k + 1. Its proof, 
, will not be given 

matrix on the right- 
be the j -th row of 

Formulas (2.6) 
proi3ided n > k + 1, by 

Var(a ) 

= (n-k-1)EI+Ij 

(n-k-1)E1i . 

(5.5) 

(5.6) 

If the redefined weights are normalized to add to 

unity 

L4 1 

then for random sampling, with the assumption 

(5.2) , 

(5.7) 

Ecpn(Xn) 1. (5.8) 

Therefore a specific choice of X improves on the 

expected outcome of random sampling if and only if 

(5.5) is less than unity. Of course when n = N, 
no improvement on random sampling is possible, and 
it may be verified in this case thatcp*jj(XN) 1. 

The weights defined by (5.5)- (5.7)- acquire a 
relative meaning, with respect to random sampling, 
rather than the absolute meaning of earlier sec- 
tions. Regardless of the relative precisions of 
(au), each of the weights do have an effect on the 

sample. 
The notion of scaling the weights may be used 

even when the validity of the assumption (5.2) is 

suspect. In general, any estimate vj(n) of Var(aj) 

may be specified and then 

(Xn) /vj(n) (5.9) 

used in place of (5.6). Values of vi(n) may be 

estimated using simulations from random sampling, 
but alternative choices for vii(n) are pjS *pi with 

S* the design matrix for a païticular ass gñment, 
or a value proportional to This 



last choice is equivalent to (5.6) if /(n -k -1) is 
the constant of proportionality, and provides sup- 
port for using (5.6) even when (5.2) is not true. 

In applications thus far we have found (5.6) 
to be a useful approximation even when several of 
the independent variables are discrete or categor- 
ical, and therefore are not approximately multi- 
variate normal. Actually, (5.3) is infinite for 
random samples if categorical or discrete variables 
are present since there is the possibility that 
random sampling will fail to represent all categor- 
ies. Use of (5.5) and (5.6) as a bench mark there- 
fore favors random sampling, since it makes the 
expected outcome of random sampling appear to be 
better than it actually would be. 

The definition in (5.6) may be used to gener- 
alize the measurement of balance provided in (4.2). 
Suppose an assignment of subjects to the g treat- 
ment groups has been made with unequal group sizes 
nl, , ng. Let , be the g values of 
(5.6). Each of these values has unit expectation 
for random sampling. Formula (4.2) may be used 
with replaced by to define balance. More 
generally, (4.2) may be replaced by a weighted 
variance with weights increasing in ni chosen to 
reflect the variability of for random sampling. 
The best choice of weights is still under investi- 
gation. 

These measures of balance allude to the bal- 
ance of final efficiencies only, although the FSM 
balance algorithm has led to substantially better 
balance than that expected from random sampling 
for the variances of all the Lai). Balance with 
respect to each individual coefficient may be 
measured in this same manner. The weight vector 
in (5.6) simply is reset to indicate the particular 
value j for which estimation is being considered. 
That is, one sets Wj 1 and all other values of 
the weights at zero before computing the statistic 
(4.2). This then is done for each j 1(1)p, re- 
sulting in p separate measures. 

The expected balance, assuming random sam- 
pling, may be computed either by applying the same 
theory used to derive (5.3) or by using simulation 
methods. The theoretical results, which are based 
on assumption (5.2), will be published elsewhere. 

After each assignment of subjects to treat- 
ments the FSM prints out a battery of statistics 
which are used to assess the design, including the 
g X p matrix H of normalized variances of regres- 
sion coefficients 

p'S 

hij = (ni-k-1) (5.10) 

and the measures of precision and balance just de- 
scribed, each of which is a function of the ele- 
ments (5.10). Therefore, gains in precision and 
balance relative to random sampling can be observ- 
ed and the design inputs or selection method re- 
considered if the results are unsatisfactory. 

For convenience of exposition, only the sit- 
uation of equal cost per experimental subject 
has been discussed in Sections 4, 5. The general 
case with costs of subjects, not numbers of sub- 
jects, being allocated to treatments raises no 
markedly new problems. There is insufficient 
space here to treat this generalization. 
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6. ROBUSTNESS 

The act of selecting the most efficient sub- 
jects for experimentation and rejecting the least 
efficient can lead to biases if: (a) the model 
and its inputs are improperly specified; or (b) if 

there are measurement errors associated with the 
independent variables, these errors being corre- 
lated with the dependent variable. To illustrate 
(b) with a somewhat unrealistic example, suppose 
family income were included as a single indepen- 
dent variable specified to have a linear effect. 
Then families with extremely high or low incomes 
are preferred by the FSM. If actual incomes of the 
target population are fairly homogeneous, then the 

extreme incomes reported might belong mainly to 
families who either are careless in reporting such 
data or who lie. The treatment groups thus de- 
rived would not be optimal with respect to income, 
but instead would be overrepresented by careless 
and untruthful people. If such people differ with 
respect to the dependent variable, as they would 
be likely to do, then "optimal" selection from the 
initial population leads to biased estimates for 
the general population, and without compensating 
gains in precision. This same example also may be 
used in case (a) to illustrate that biased results 
may be obtained from improper specification of the 
income term, even if income always is reported ac- 
curately. 

An "heroic assumption" may be made to circum- 
vent these concerns, namely that all variables 
which could have an effect on the dependent vari- 
able are already included in a properly specified 
model. Of course the heroic assumption is too 
strong because improper specification still could 
yield samples which result in correct estimates of 
treatment contrasts, if treatment groups are bal- 
anced. While the heroic assumption probably is 
valid for many experiments in the physicial sci- 
ences, there tend to be too many latent variables 
(unmeasured variables correlated with the depen- 
dent variables) for its validity in social experi- 
mentation. 

The effect of latent variables must then be 
accounted for by 

(i) reducing their variance by balancing 
variables likely to be correlated with 
them, 

(ii) making the residual effect of the latent 
variables random with respect to the 
treatments. 

The best way to meet these objectives with 
the FSM, although at a substantial sacrifice of 
optimality if n0 (6.1) is large, is to make all 
groups be representative of XN. Equivalently, the 

group of subjects being discarded must be balanced 

with the treatment groups. Letting 

no 
i=1 i 

(6.1) 

be the number of experimental subjects which must 

be discarded, we define one extra group, the dis- 

card group of n0 subjects, and require its members 
to be selected in the same fashion as the other 

treatment groups. 
Constructing representative groups in this 

manner makes the design very robust. If the 



independent variables of XN are pure random noise, 
the result will be a simple random assignment. 
If the independent variables of XN are measured 
with error but are correlated with the "true val- 
ues" then a better than random assignment is 
achieved. This argument applies equally to prob- 
lems of model misspecification, to errors in vari- 
ables, and to the use of proxy variables. To the 
extent that latent variables are correlated with 
the independent variables their effect is reduced. 
In the limiting case, any latent variable having 
a multiple correlation coefficient of unity with 
the set of independent variables will be as well 
balanced as the independent variables are. Final- 
ly, the values of the independent variables act as 
a randomizing agent so that the residuals of the 
latent variables (net of their predicted values 
from the independent variables) would be related 
to the treatments in random fashion (Rubin 1974). 

Some of the arguments just presented apply 
also to the situation of Section 4 with balanced 
treatments, even if the discard group is not bal- 
anced. 

7. APPLICATION OF THE FSM TO THE HEALTH INSURANCE 
STUDY; FURTHER EXTENSIONS 

The finite selection model has been used in 
two modes for the Health Insurance Study. The 

Conlisk -Watts allocation model, implemented by 
FSM (Section 3) was used to determine which and 
how many health insurance plans (treatments) 
should be used and how many (n1, n2, ..., ng) 

families (subjects) should be assigned to each 
plan. Then in the mode of Sections 4 -6 the 
model has been used over a three -year period to 
assign families to treatments and controls in the 
sites chosen for the experiment. 

Nothing will be said here about the alloca- 
tion application, except that certain extensions 
of the Conlisk -Watts model were developed to cover 
the case where the rows of X are randomly related 
to the variable of choice (in that case, the plan 
and distribution of family income). The modified 
algorithm is not unlike the one to be described in 
(7.1) which solves the "multiple family unit" prob- 
lem. 

In each of several sites, roughly N = 600 

families are assigned to g = 13 groups of treat- 
ments, controls, and discards. (These numbers 

vary from site to site.) This is done on the 
basis of 24 variables constructed from 14 demo- 
graphic factors provided from baseline interviews 
of families. These factors are wage and nonwage 
income, family size, education, insurance, welfare 

status, number of family heads, race, age, sex, 

health status, physician and hospital visits, and 
location of residence. Location is included be- 
cause it could be a proxy variable for certain un- 
measured variables. The other factors are chosen 
because each is known to predict future utilization 
of health services and future health status. If 

the 24 variables just described, after preliminary 
scaling, are denoted z2, z25, then the matrix 
XN with k 25 columns is defined according to 
(5.1). The population from which XN is sampled at 
random is the target population. 

With this target population and centering 
using (5.1), the p X k policy matrix P has p = 29, 
k 25 with the upper 25 x 25 portion being the 
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identity matrix. The last four rows account for 
interest in the missing categories of the family 
size, education, health status, and age factors, 
because these were divided into at least three 
categories. Thus, the regression coefficients 
themselves are essentially the parameters of inter- 
est. 

The 29 weights {W} were chosen to be fairly 
equal. Formula (5.6) is used to define the objec- 
tive function, although is modified to (2.12) 

with Q0 XÑXN. The assignment strategy combines 
the methods of Sections 4 -6 to produce a combina- 
tion of optimality, balance and robustness. Cer- 
tain additional modifications of the procedures 
described before have been necessary, and will be 
discussed in the ensuing paragraphs. The results 
from data in the first site show that, used in this 

conservative way with numbers similar to those 
mentioned above, a 25 percent improvement over 
random sampling in (formula (5.6)) may be obtain- 
ed. The measure of imbalance (formula (4.2)) is 
only 4 percent of that expected for random samples. 
The computational cost of FSM in making these se- 
lections is about twenty -five dollars. 

The entire assignment is made in several 
stages, each spaced several weeks apart. This is 

required because selections must be made for the 
first enrollments before all baseline data are re- 
ceived. The sequential nature of the FSM in its 
build -up mode fits in naturally with this require- 
ment; selections at each stage optimally augment 
those already made. 

Because the final sample size on some plans is 
small, and is reduced further by about one -half at 
the first stage, the condition n > k + 1 is not 
met on several plans during the first assignment. 
Therefore, the 13 groups are created in a series 
of "splits" to improve this situation. The first 
split includes fewer groups, each meeting the con- 
dition n > k + 1 so that precision and balance may 
be adequately evaluated by the methods of Section 5. 

Further splitting of these groups into smaller 
groups is carried out using fewer than all 24 in- 
dependent variables so that again n > k + 1 for 
each group. By the time the final stage is reach- 
ed this problem is no longer serious. 

"Multiple Family Units" (MFU) often occur. 

These are groups of families who live in the same 
household unit and must be assigned to the same 

treatment group. The algorithm (2.11) for an 

is modified to 

ciCEi(Xn) 

(X) ci 

ieMFU 

(7.1) 

This is a linear approximation to the total improve- 
ment to divided by the total cost for all fami- 
lies in the MFU. The linear approximation is good 
if n is large, i.e., if the impact of any one fami- 
ly on the objective function is small. 

The computational cost of making the assign- 
ments with the numbers just described would be 
about 250 dollars for each site. While this is not 

excessive, it can be reduced by a substantial fac- 
tor by limiting the "search- length" for each selec- 

tion, and we do this. Rather than search over all 
unassigned families at each step to find the best, 
the search is limited to a few families. We have 

found that choosing the best of 20 families at each 



step cuts computational costs ten -fold with only a 
modest loss of efficiency. Each successive selec- 
tion is made by cycling through the list of un- 
selected families in intervals of 20, and return- 
ing to the beginning of the list as often as is 
necessary. 

Introducing methods with limited search 
length makes the resultant selection dependent on 
the initial listing order of the families. For 
this reason, unselected families initially are 
listed in random order. A search length of unity 
therefore would result in a random selection, and 
longer search lengths will outperform random se- 
lection. Besides cutting computational costs, 
limited search length procedures have the advan- 
tage of adding randomness to the assignment. 

Stratified sampling may be combined with the 
optimality of the FSM. If the unselected subjects 
are partitioned into strata indexed 1, 2, ..., s 

then the model may be instructed to assign a pre - 
specified number of subjects from each stratum to 
each treatment group. Selections meeting these 
constraints are most easily specified by inputting 
a "selection order matrix." The selection order 
matrix is an N x 2 matrix, the first row indicat- 
ing the treatment ti which makes the first selec- 
tion and the second row the specified stratum 
from which the selection is to be made. The sec- 
ond row indicates that t2 may select from s2, and 
so on. The selection order thus specified con- 
stitutes a generalization of fixed selection order 
discussed in Section 4 to the case of more than 
one stratum. As noted there, it offers a second 
opportunity (besides reduced search length) to add 
randomness to the assignment by randomizing the 
order in which treatments make choices. 

The strata just described are used in HIS 
assignments to get prespecified counts for in- 
come groups, family sizes, multiple family units, 
and to separate families by selection stages. 

8. SUMMARY 

Theory and algorithms have been described 
which provide the basis for the development of a 
computer model, the "finite selection model," 
which is being used in several ways in the statis- 
tical design of the Health Insurance Study. The 
main purpose of the model is to assign experimen- 
tal subjects to treatments, meeting experimental 
objectives of optimality, efficiency, and balance. 
The software already is available and has been 
used, although it continues to be modified and 
improved. 

Most of the general ideas for deriving opti- 
mal, balanced, and robust samples can be applied 
to other objective functions, such as the general- 
ized variance, and to other design situations. 
Related work on D- optimality in various situations, 
besides references already mentioned, is reported 
(Harville 1975), (Dykstra 1971), and (Wynn 1975), 
and also in additional references cited by them. 
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